Exercise 1

Suppose that $u=u(x, t)$ and $v=v(x, t)$ have partial derivatives related in the following way:

$$
\frac{\partial u}{\partial t}=-\frac{\partial v}{\partial x} \quad \text { and } \quad \frac{\partial v}{\partial t}=-\frac{\partial u}{\partial x} .
$$

Show that u and v are solutions of the wave equation (1) with $c=1$.

Solution

Differentiate both sides of the equation on the left and right with respect to x and t, respectively.

$$
\left\{\begin{array} { l }
{ \frac { \partial u } { \partial t } = - \frac { \partial v } { \partial x } } \\
{ \frac { \partial u } { \partial x } = - \frac { \partial v } { \partial t } }
\end{array} \rightarrow \left\{\begin{array} { r }
{ \frac { \partial } { \partial x } (\frac { \partial u } { \partial t }) = \frac { \partial } { \partial x } (- \frac { \partial v } { \partial x }) } \\
{ \frac { \partial } { \partial t } (\frac { \partial u } { \partial x }) = \frac { \partial } { \partial t } (- \frac { \partial v } { \partial t }) }
\end{array} \rightarrow \quad \rightarrow \quad \left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x \partial t}=-\frac{\partial^{2} v}{\partial x^{2}} \\
\frac{\partial^{2} u}{\partial t \partial x}=-\frac{\partial^{2} v}{\partial t^{2}}
\end{array}\right.\right.\right.
$$

The mixed partial derivatives are equal by Clairaut's theorem.

$$
-\frac{\partial^{2} v}{\partial t^{2}}=-\frac{\partial^{2} v}{\partial x^{2}}
$$

Multiply both sides by -1 .

$$
\frac{\partial^{2} v}{\partial t^{2}}=\frac{\partial^{2} v}{\partial x^{2}}
$$

Therefore, v satisfies the wave equation with $c=1$. Now instead, differentiate both sides of the equation on the left and right with respect to t and x, respectively.

$$
\left\{\begin{array} { l }
{ \frac { \partial v } { \partial x } = - \frac { \partial u } { \partial t } } \\
{ \frac { \partial v } { \partial t } = - \frac { \partial u } { \partial x } }
\end{array} \quad \rightarrow \quad \left\{\begin{array} { l }
{ \frac { \partial } { \partial t } (\frac { \partial v } { \partial x }) = \frac { \partial } { \partial t } (- \frac { \partial u } { \partial t }) } \\
{ \frac { \partial } { \partial x } (\frac { \partial v } { \partial t }) = \frac { \partial } { \partial x } (- \frac { \partial u } { \partial x }) }
\end{array} \quad \rightarrow \quad \left\{\begin{array}{l}
\frac{\partial^{2} v}{\partial t \partial x}=-\frac{\partial^{2} u}{\partial t^{2}} \\
\frac{\partial^{2} v}{\partial x \partial t}=-\frac{\partial^{2} u}{\partial x^{2}}
\end{array}\right.\right.\right.
$$

The mixed partial derivatives are equal by Clairaut's theorem.

$$
-\frac{\partial^{2} u}{\partial t^{2}}=-\frac{\partial^{2} u}{\partial x^{2}}
$$

Multiply both sides by -1 .

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

Therefore, u also satisfies the wave equation with $c=1$.

